| —4. o7

PCIl Mobile Design Guide

Version 1.1

December 18, 1998

Revision 1.1

Revision History

Revision Issue Date Comments
1.0 October 27, 1997 Original Issue.
1.1 December 18, 1998 | Various edits and updates.

DISCLAIMER

ThisPCI Mobile Design Guideisprovided " asis' with no warranties whatsoever, including any

war ranty of mer chantability, noninfringement, fitnessfor any particular purpose, or any warranty
otherwise arising out of any proposal, specification, or sample. The PCI SIG disclaimsall liability for
infringement of proprietary rights, relating to use of information in this specification. No license,
express or implied, by estoppel or otherwise, to any intellectual property rightsisgranted herein.

All product names are trademarks, registered trademarks, or servicemarks of their respective owners.

Copyright © 1994, 1998, PCI Special Interest Group

All rights reserved.

Revision 1.1 '

CONTENTS

1. Introduction

1.1.2. System Power Partitioning and Controlccccovveveieieene s
IR T B T=. Y ol X o 1 o)

2. Clock Run

2.1. Clock Run Clarification / MOtIVAION...........ccviieiiieeese et
2.1.1. Clocking Architecture and ROIES...........cceeveieiiece e e
2.1.2. SIgNal DEFINITION ...cooiiiiieeeeee ettt nre e r e
2.1.3. ClOCKING SEALES.......cceeitiitieieeiieeeesie st eeeste st etesteeseeste s e esaesteesaesbesseensesreeseeseesneesesreanes
2. 14, OPEIELION ...ttt ettt st e e et s bt bt bt b e e e e e e ne Rt b e nenr e nenr e

2.1.4.1. Clock StOP OF SIOW DOWN.......coiiiiicieie ettt e
2.1.4.2. ClOCK Start Or SPEEH U ..c.veveueeieieiesiesie sttt
2.1.4.3. MantaiNing the ClOCKcocieiiiicece e e e
2.1.4.4. Clock Continuation - Minimum ReEPELitioN..........cccoovririreiineseeeeeeese e
2.1.5. Implementation NOESccccveieii et
2.1.5.1. Central RESOUICE RUIESocueeiirieeiesieseeie st e sttt sne e
2.1.5.2. Master CLKRUNH RUIES.........cceoiririnisesesie et
2.1.5.3. Target CLKRUNH RUIEScooiviiiiesieeete et eee e sae e sae e e s snee s
2.1.5.4. ClOCK LBLENCY ISSUES......cueeitiitieiesieeeesteste et sttt eee st testeeaesbesreennesresaeenes

3. Minimum PCI Clock Frequency
4. PCI - CardBus/PCl Common Silicon Requirements

5. PCI Agent Power Capabilities
5.1, ClIOCK CONEIOL ...ttt ettt ne e nnas
5.2. PCI Configuration and Interface Logic Capabilities..........cccoeieireniienenerceeeeenee

5.3. BUFfer Capabiliti€Sc.ccuiieeiicece ettt st

6. CLKRUN# Across a Bridge Example
6.1. Case A: SKEWEH ClOCKS........cuiiriiieieieireste sttt sttt st see s

6.2. Case B: DIVIAed CIOCKS.......ccuiieirieeiese et seee et ee st et s eeestesseeneeseeeneessenneas
6.2.1. Description of Flow Diagram: Divided CIOCKS.........cccevvveeiiiicie e

6.3. Case C: ASyNChronOuS ClIOCKScociiiririiiresieseee e

21

22

22

23

24

26
26

' Revision 1.1

6.4. Secondary Bus Clock Not Controlled By Bridge...........ccoovrereieieniineneseseseeseeeeeeee 30

7. Use of Mixed Clock Run Support Components

7.1. CharaCteriStiCS Of DEVICES.......oiiiieeieiiee sttt sttt st sne e e stesneeneenees 31
7.1.1. BUSACCESS AIGOMTNM ... e 31
7.2. Clock Slowing/Stopping and Add-iN Cards..........cceeiirerenerereieeeeeee e 33

8. PCI Buffer Leakage Control

8.1. Leakage Controlled System EXAMPIEccoiiriiiiiieie e 34
300 I O 1 o LU A T o U =T 35
8.1.2. OULPUL CITCUITS ...ttt sttt se et ne st nennenn e e e eneas 36
8.1.3. 1NPUL / OULPUL CITCUITS....cviiieeiectecieeie st eee sttt ee st st sre s e saesre e sreeaeene e 37
814, ClOCK INPULS. ...ttt ettt sr et en et b e nnenn e e e ene s 38
8.1.5. ClIOCK OULPULS......eeueeiieiteeiesteeteste st et eee st este s e e aee st e sreesesreeneesresneetesreeneessesaeennens 38
8.1.6. PCl SideBand SIgNalS..........cceiuriririiniisiesiesieie st 38
8.1.7. COre PCl INEITACE......eiiiiisieieeeeeeses et sr e et 38
8.1.8. BUSMaAESLEN INLEITACES.....ccuvieeeesiieeeieste ettt n e e e e 39
8.1.9. INEITUPL INLEITACE......ee e e s ee e 39
8.1.10. Mechanism for Entering / Exiting Leakage Controlled Statec.covvereieeennnne 39

Revision 1.1 '

Figure 1.
Figure 2:
Figure 3:
Figure 4.
Figure5:
Figure 6:
Figure7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:

FIGURES
Functional Elements of a Typical Mobile PCl Systemccocoovivenineieinineneniens 11
Clocking AQENT ROIES........ccuiiiceeie ettt st sne e tesreenaesaeereas 13
CLKRUNZ# QN0 BUS SEALES........cueeeiieeiiiieiesieesie et 15
Clock SLOP OF SIOW DOWN ...ttt st ne e 16
ClOCK Start OF SPEEA UPcveivirieieieeeeeese sttt e nne e 17
MaintaiNiNg the ClOCKccciiiiieie e 17
Multiple CIOCK CONINUES.........cveiiiiiee e 18
PCI Clock Timing Diagram.........cccoeeieeieseeiesesieesie e esiestesee e sreesaesseseessessaessessesnnens 21
PCl Agent POWEr SEOMENES........oooiiiieeereeese e sre e 21
= g Lo YA D Lo = S 22
Bridge ArChITECIUNE.........eeiieeecce s 23
Bridge CLKRUN#H ROULINGccvviieiieiiecieie sttt se et 24
State Diagram for Case A: SKewed ClOCKScooviieii i 26
Flow Diagram for Case B: Divided ClOCKS.........ccccevvveiiere e 28
Timing Example for Case B: Divided ClOCKScccoeiiiieiiniee e 29
Determining Clock Run Support on the Motherboardccocvevviiveveivccececeen, 32
Determining Clock Slowing/Stopping Compatibility with an Add-in Card 33
System Scenario for Leakage Problems ... 34
[OX I 1 0T o1 | G o 1 35
PCI OULPUL CITCUIT ...ttt st ne e 36
o O 1 (@ @ o | TS 37
Example of aLeakage State Entrance/ Exit Mechanism.........ccccccevvcevnivccececnenen, 40

' Revision 1.1

Table 1:
Table 2:
Table 3:
Table 4:
Table 5:
Table 6:
Table7:
Table 8:

TABLES
PCI Agent ROIE DEFINITIONSooiiiiiiieieeeeeee e 14
Mininum and Maximum Values for TCrdel ... 18
MiNIMUM TCITEP VAIUE.......couiieieieiirteteee et 19
PCI Mobile Clock Timing REQUIFEMENLScccovveeiiereceeiecteesee e see e 20
CLKRUNH TEIMINOIOQY ... eveueeueeiieieeiisiesiesiesseee et 25
PCl BUSEA SIgNAIS......coiiiiieie ettt st sttt raestesreenaenneenee e e 38
REQ/GNT PaITS.....cceieieieieieeieiestestesiesieseeseeseesessessessessessessessesessessessessessessessensensensesenns 39
L O B 1= 10K S 39

Revision 1.1 '

Preface

The original Mobile Design Guide was published on October 27, 1994 and addresses the issue of
managing power in the platform. At the time Mobile platforms were the primary focus of the
effort. Since that time the concepts of managing the power consumed by devices that reside on
PCI has evolved to include platforms from Mobile platforms to Desktop systems and is moving
toward servers. As this evolution has taken place, two formal specifications have been
developed to meet these needs: the Advanced Configuration and Power Interface (ACPI)
(http://www.teleport.com/~acpi/) and the PCI Power Management Interface Specification (PCI-
PM) (http://www.pcisig.com). ACPI is focused at the platform devices while PCI-PM is focused
at the PCI add-in card market. ACPI requires the BIOS to know and control the devices while
the PCI-PM specification defines a common programming interface define in PCI configuration
space.

This version of the Mobile Design Guide has been updated to reflect these changes in the market.
Some of the information that was included in the original version has been updated and
incorporated into other specifications and, therefore, has been removed from this version. When
this is done, a reference to the updated material has been added. The remaining information is of
a tutorial nature about the concepts of power management for a device. The exception to this is
the definition of CLKRUN#. It has been included in this Design Guide since the CLKRUN#
signal is included in the PCI Local Bus Specification to help facilitate the development of
common silicon for both PCI and CardBus designs. (Note that CLKRUNZ# is not supported in
the PCI connector and is viewed as a sideband signal.)

Revision 1.1

Terminology

The following list contains definitions of terms used throughout this document.

agent

CardBus

CardBus controller

clock status

host

host CardBus
bridge

insertion/removal

master

non-operational
frequency

operational
frequency

PCI agent

PCMCIA

power management

A logical entity that operates on a computer bus. The term applies
collectively to functions of a bus master or abus save, or to a
combination of both.

The 32-bit PC Card (PCMCIA) interface. Loosely used, the term CardBus
may refer to either the expansion dot in the system, or to the interface
specification itself.

The chip (or chips) that isolates the CardBus PC Cards from the rest of the
system. Depending on the definition of the system bus, this might be a set
of electrical buffers or acomplete bus bridge. Same as host CardBus
adapter or host CardBus bridge.

Asavariation on the clock run protocol, the clock may be slowed to a
non-operational frequency instead of being fully stopped. Thisisasystem
dependent option. PCl Mobile agents/ devices must support afull clock
stop.

An agent or agroup of agents which control system setup and
configuration, and system resource management, same as system master
from the CardBus point of view.

The chip (or chips) that isolates the CardBus PC Cards from the rest of the
system. Depending on the definition of the system bus, this might be a set
of electrical buffers or acomplete bus bridge. See CardBus controller.

Cold: the socket is powered down (Vcc), signals are tristated.
Warm: the socket is powered up (Vcc), signals are tristated.
Hot: the socket is powered up (Vcc and signals).

An agent that has an ability to obtain control of the interface and perform
memory or /O reads and writes to system resources.

Thisisafrequency of CLK where normal operations and data transfers do
not occur across a PCI interface. Thisisindicated by CLKRUN# in a
high state. The CLK will either be stopped or running very slowly.

Thisisafrequency of CLK where normal operations and data transfers
occur across a PCI interface. Thisisindicated by CLKRUN# in the low
state. The operational frequency may be arange of frequencies and is not
guaranteed to be the maximum frequency available in the system.

An electrical component conforming to the PCI Local Bus Specification
for operation in a PCI local bus environment.

Personal Computer Memory Card International Association.

A system level methodology which utilizes both hardware and software
techniques to prolong the battery life of a system.

Revision 1.1 '

Reset

system master

target

An agent’ s default state after a power-up or a"warm' reset. PC Card
agents must enter Reset state upon insertion of the Card into a socket.
Power-up reset: configuration of a agent programmable by the system is
not required to be preserved after a Power-up reset.

Warm reset (without switching Vcc off and on): agent configuration is
preserved after awarm reset.

An agent or agroup of agents that control system setup and configuration,
and system resource management, same as host from the CardBus point of
view.

An agent that sends or receives data under control of abus master. There
are two types of targets:

I/O target -- selected by its address in the |/O address space

Memory target -- selected by its address in the memory address space

Revision 1.1 '

1. Introduction

1.1. Purpose

PCI defines a low latency, high performance interconnect bus with a low pin count and
"glue-less" interface ideal for mobile systems. This Design Guide is a handbook for
designers of mobile systems and components incorporating the PCI bus. The Design
Guide aids the PCI designer in implementing a PCI based component or system.

Figure 1 shows the functional elements of a typical mobile PCI-based system. This
architecture demonstrates the use of PCI mobile agents on the system (local) bus, the use
of a PCI compliant slave agent on the motherboard, and the use of CardBus Agents via a
CardBus controller / bridge. Also, "shared silicon" agents for use in both PCI mobile
and CardBus environments are shown.

PCIl Mobile/
Processor ng\j/ Egs
CardBus
@ PC| Controller Card _Bus
Bridge/ Mobile/ Device
Memory DRAM Cardbus
Recslgﬁrce Controller Device
PCI System Bus Docking
Interface
PCI Std
I;CI -2'0 Mobile Expansion
evice Device Bridge

Std Std
Device Device

Figure 1. Functional Elementsof a Typical Mobile PCI System

Computer systems of today and tomorrow are geared towards ease of user interaction
and power savings in the system. To address user needs, system manufacturers have
various methods in which to make the computer more appealing. Power control methods
are very specific to the different system manufacturers and is most likely a proprietary
solution. However, there are some general power management techniques that can be
discussed. These include:

* Clock Control
* Power Partitioning and Control

¢ Device Control

11

' Revision 1.1

1.1.1. Clock Control

Fundamental to computers is the ability to maintain and change the state of
semiconductor devices. Most logic devices today use clocked or synchronous designs.
Since any change of state of a semiconductor device consumes energy, power
management techniques are sometimes used to minimize the number of unnecessary state
transitions. One way to do this is to control the input clock to a logic device.

Clock control can involve either slowing the clock or stopping the clock to a given
device, assuming that the device continues to function in this case. The CLKRUN#
examples in Sections 5-8 detail a method for stopping and starting clocks in a PCI
environment. These techniques may, in some cases, be extended to non-PCI system
elements.

1.1.2. System Power Partitioning and Control

Since power is consumed by all active electronic devices, it should be apparent that
removing power to these devices is an effective method of power management.
However, it should also be apparent that this technique introduces a number of problems;
that is, how is the power controlled, how does one identify when that device is needed or
not needed, and how does one save and restore the state of that device if power is
removed. In general, sections of a mobile product may be partitioned into one or more
power partitions, in which certain devices are provided power independent of other
sections.

These sections may have power applied or removed independently under certain
circumstances. The process of removing and restoring power to a particular section of a
mobile computer system, or to a particular device, is generally referred to as the
SUSPEND/RESUME process with intermediate IDLE and STANDBY states. It implies
that power is partitioned across certain boundaries, although these boundaries may be at
the system, subsystem, or device levels.

It is beyond the scope of this document to detail all possible implications of power
switching of mixed components. However, some of the problems that arise in a power
partitioned environment are discussed. These include leakage control and
SUSPEND/RESUME of PCI agents. Leakage control deals with the interaction between
different logic devices when they reside in separate power partitions.
SUSPEND/RESUME deals with some of the device state save and restore issues.

1.1.3. Device Control

Device control is a device management technique that limits the power consumption of a
particular device or sub-system, typically a peripheral device. An example of this is the
control of a diskette drive motor. A motor consumes substantial power; therefore simply
turning the motor off on a diskette drive saves significant power. In DOS machines, the
diskette motor is managed by BIOS; therefore the control in this case is part of the base
system. The same general technique, however, can be applied to a number of devices,
including hard disk motors, charge pumps, and similar devices. Since the number of
peripheral devices and the specific control methods are clearly beyond the scope of this
document, they are not further discussed.

12

Revision 1.1 '

Device control techniques must rely on a priori information specific to a given device or
class of devices. The section on power control considerations discusses the type of
information required to properly manage a device.

2. Clock Run

2.1. Clock Run Clarification / Motivation

In the PCI Local Bus Specification, it is stated that all components (with a few
exceptions) must work with frequencies up to 33 MHz. The clock frequency may be
changed at any time during the operation of the system so long as the clock edges remain
"clean" (monotonic), the minimum cycle and high and low times are not violated, the
PCI bus is idle, and if no bus request or lock is asserted. When the system stops the
clock it must be stopped in the low state and the clock line must remain low until the
clock is restarted. It does not specify a method for determining when to stop or start the
clock. Since the minimum clock frequency can be as low as 0 MHz it is difficult for a
PCI agent to determine if the clock is stopped or just running extremely slow.

The provisions for variable clock frequency and for stopping the clock imply that the
devices interface logic must have a static design to maintain its state, and the device
cannot rely on any particular frequency of the clock. Devices which are capable of bus
mastership cannot assert a bus request while the clock is stopped since REQ# is a
synchronous signal to the clock.

However, the following is not specified in the PCI Local Bus Specification:
e Method for determining when to stop clock.
* Method for determining when to start clock.

The CLKRUN# signal and its protocol answer these issues for the mobile environment.
For other platforms refer to the PCI Power Management Interface Specification for
addition information.

2.1.1. Clocking Architecture and Roles

Figure 2 and Table 1 show the relationship between agent roles in the clocking

architecture.
Master Target
ck A 0 1
Central |) KRUN# S
Resource Y >

Figure2: Clocking Agent Roles

13

Revision 1.1

Table 1: PCI Agent Role Definitions

Clocking Agent Role Definition

Central Resource | This is the "clock controller" which controls modulation

of the PCI clock and monitors and drives the
CLKRUN# line to implement the clocking protocol.

Master

This is any PCI mastering agent which comprehends
the clock control protocol and uses the CLKRUN# line
to request a clock running state in order to assert
REQ# and receive ownership of the bus.

Target

This is any PCI agent which may require PCI clocks
beyond the four clocks guaranteed at the end of a
transfer cycle. It uses the CLKRUN# line to request
that the clock remain running for a period of time.

2.1.2. Signal Definition

CLKRUN#

o/d,
glt/s

Clock Run is an optional signal which is used by devices to
request starting (or speeding up) the clock, CLK. CLKRUN#
also indicates the clock status. For devices, CLKRUN# is an
open drain output and also an input. For the central resource
(provider of the clock) it is a sustained tri-state I/O signal. A
device requests the central resource to start, speed up, or
maintain the interface clock by the assertion of CLKRUN#.
The central resource is responsible for maintaining
CLKRUN# asserted, and for driving it high to the deasserted
state. CLKRUN# is low upon deassertion of reset (since CLK
is running upon deassertion of reset).

CLKRUN# is an input for all clocking roles, allowing the
monitoring of clocking state transitions.

Output drive characteristics are defined by clocking role as
follows:

Master / Target: "open drain" (that is, low drive
capability only), asynchronous.

Central resource: high and low drive capability, clock
synchronous when driven to a high
state, along with weak controllable
keeper to maintain a high level during
clock stop.

14

Revision 1.1 '

2.1.3. Clocking States

There are three main states in the clocking protocol:
¢ Clock Running - the clock is running and the bus is operational

* About to Stop/Slow Down - the central resource has indicated on the CLKRUN#
line that the clock is about to stop/slow down

¢ Clock Stopped/Slowed - the clock is stopped/slowed, with CLKRUN# being
monitored for a restart

2.1.4. Operation

Figure 3 shows all of the PCI bus states and the level of the CLKRUN# signal for each
of the corresponding Target/Master/Resource CLKRUN# driven state.

BUS BUSY
(CLKRUN# LOW)

TARGET CLOCK CONTINUE
— (CLKRUN# LOW)

BUS IDLE
(CLKRUN# HIGH)

CLOCK
STOP/SLOW
REQUEST

MASTER CLOCK RESTART

(CLKRUN# LOW)
4 PCI CLOCKS

MINIMUM

CLOCK
STOPPED /
SLOWED

(CLKRUN# HIGH)

Figure3: CLKRUN# and Bus States

15

' Revision 1.1

2.1.4.1. Clock Stop or Slow Down

DRIVEN BY CENTRAL RESOURGE PULLUP ENABLED

Figure4: Clock Stop or Slow Down

The central resource drives CLKRUN# low while CLK is running at a normal operating
frequency. Before stopping the clock or slowing the clock down to a non-operational
frequency, the central resource synchronously drives CLKRUN# high for one clock
period, and then tri-states its driver. A low current pull-up (a keeper) must be provided
by the central resource to prevent the line from floating. Implementations may disable
the pull-up when the central resource samples CLKRUN# low.

CLK continues to run unchanged for a minimum of four clock periods after CLKRUN#
is deasserted. In addition, CLK must not be stopped before the agent can request it to
continue by asserting CLKRUN#. For example, after clock 8, the central resource may
stop or slow down the clock if all of the conditions specified above are met.

CLK is guaranteed to run unchanged for a minimum of four clock periods after
CLKRUN# is deasserted. The central resource may keep CLK running unchanged for
any number of clocks (greater than or equal to four).

PCI devices are required to maintain their states while the interface clock is stopped or
the clock frequency is changed.

2.1.4.2. Clock Start or Speed up

Figure 5 shows that a device asserts the CLKRUN# signal asynchronously (since CLK is
stopped) to request the central resource to restore CLK. The device holds CLKRUN#
asserted until it detects two rising edges of CLK. After the second clock edge, the
device must disable its open drain driver.

After detecting the assertion of CLKRUN#, the central resource starts the clock if the
clock was stopped, or brings it to an operational frequency if the clock was slowed down.

The central resource drives CLKRUN# low at any time after it detects that the line is
asserted by the device, but not later than on clock 3. The central resource may disable
the pull-up on the CLKRUNZ# line at this time.

The central resource must not drive CLKRUN# high earlier than on clock 5.

16

Revision 1.1 '

The device may not assert (start driving) CLKRUN# if it is already driven low by the
central resource. The device must not assert CLKRUN# unless the line has been
deasserted for two successive clocks, that is, before the clock was stopped.

It is expected that a device which has asserted CLKRUN# for gaining bus mastership,
would assert REQ# no later than four clocks after the clock is restarted. Otherwise, the
clock can be stopped again by the central resource.

CLK F N

CLKRUN#

REQ#

PULLUP ENABLED DRIVEN BY CENTRAL RESOURCE

DRIVEN BY DEVICE

Figure5: Clock Start or Speed up

The central resource should provide low latency clock restoration upon assertion of
CLKRUN# (typically, not more than a few cycles of its internal clock) since this latency
would negatively impact the system performance. The intent of this protocol is to
provide a low latency clock control which is transparent to the system, and which would
have no apparent impact on the system performance.

2.1.4.3. Maintaining the Clock

| | | | | | I
|)))
SN U D S
1 2 3 4 5 8 7 8 9
| | | |
1 ! ! ! ! 1 1 1 1
i | | | I | | | |
FRAME# | ! ! ! | 1 1 1 1
‘ ! ! ! ! 1 1 1 1
! ! ! !			
! ! ! !			
: : : :			
IRDY#			
}			Torder
}		A	1 1 1
s T			
CLKRUN# _	1 1 1 1 s S 1		
I I I I I e b			
DRIVEN BY CENTRAL RESOURCE PULLUP ENABLED DRIVEN BY CENTRAL RESOURCE

<« >
DRIVEN BY DEVICE
*NOTE: Tcrdel shown is minimum timing.

Figure 6; Maintaining the Clock

17

' Revision 1.1

Table2: Mininum and Maximum Valuesfor Tcrdel

Minimum Maximum

Terdel 1 * Teye (1 clock) 2 * Teyc (2 clocks)

* Certain devices may require the PCI clock to be active for completing some internal
processes after a transaction is already completed. This is accomplished by the
device asserting CLKRUN# after it has been deasserted for two successive clocks.
The device must assert CLKRUN# within a certain time window (Tcrdel) (see Table
2 to avoid interrupting the clock stream. In Figure 6 the device samples CLKRUN#
high on clock 4, and must drive CLKRUN# low no later than clock 6 but not earlier
than after the turn around cycle which occurs after clock 4 to avoid interruption of
CLK. The device keeps CLKRUN# asserted for two clocks (clocks 6 and 7 or
clocks 7 and 8), and must disable its open drain driver after the second clock.

* The central resource must provide a non-interrupted clock when the device asserts
CLKRUN# in the time specified above. The system designer should take into
account:

* All delays in the path to the clock controller and the clock source.

* The time required to synchronize CLKRUN#. The central resource must not
stop the clock before a synchronized version of the CLKRUN# signal from the
device can be generated.

* The central resource must drive CLKRUN# low no later than clock 8. The
central resource may drive the line low at any time after it detects that
CLKRUNH# is asserted by the device.

The central resource must not drive CLKRUN# high earlier than on the fourth clock
edge after the CLKRUN# line was first sampled asserted.

The device may not drive CLKRUN# if it is already driven low by the central resource.
The device must not assert CLKRUN# unless it has sampled the line high on a CLK
rising edge, and must not drive CLKRUN# on the same clock edge on which the line is
first sampled high.

2.1.4.4. Clock Continuation - Minimum Repetition

| | | | | | | |
| [[
| | 1 | | 1 1 |
| |
1 2 q 4 5 8 7 g g
) | | |_Tcrre, ! >
: ! R | | o i : : e : A ‘
f — | | - I . | | [4L
| | | | | | | |
CLKRUN# : | | = e | | | |
DRIVEN BY PULLUP ENABLED DRIVEN BY GENTRAL RESOURCE PULLUP ENABLED
CENTRAL «— >
RESOURCE DRIVEN BY DEVICE

Figure 7: Multiple Clock Continues

18

Revision 1.1 '

Table 3 shows the minimum repetition rate for multiple clock continues. The case
occurs when a target does a clock continue, and the central resource immediately
attempts to stop the clock again. Figure 7, and the corresponding Tcrrep, specify the
minimum period of repetition by the central resource and target handshake.

Table3: Minimum Tcrrep Value

Minimum

Terrep | 6 * Tcyc (6 clocks)

2.1.5. Implementation Notes

2.1.5.1. Central Resource Rules

The central resource drives CLKRUN# low while the PCI clock is running. The central
resource drives CLKRUN# high (synchronous to the PCI clock) before stopping the PCI
clock. The PCI clock will continue to run for at least four clocks after CLKRUN# is
driven high. CLKRUN# cannot be deasserted unless the bus is idle. The central
resource monitors CLKRUN# while CLKRUN# is inactive, watching for asynchronous
assertion of the signal. Upon seeing CLKRUN# asserted, the PCI clock will restart. The
central resource will start driving CLKRUN# active to take over drive of the line. The
central resource also controls the high keeper on the pin. It is suggested that the keeper
is disabled by the central resource when CLKRUN# is being driven low by the central
resource (all but one clock of the CLKRUN# low time). This removes active power
dissipated by the keeper. The only current passing through the keeper when the clock is
stopped is the device leakage current.

2.1.5.2. Master CLKRUN# Rules

A PCI master drives CLKRUN# low in order to restart the clock so that it can assert its
bus request synchronously. Multiple masters requesting clock restart is allowed, but
only one will receive a grant. After master releases drive of CLKRUN# the central
resource takes over driving of the CLKRUNZ# signal.

A master may not assert CLKRUN# unless it is sampled high with CLK (before the
clock is stopped).

2.1.5.3. Target CLKRUN# Rules

If a target of an access sample CLKRUN# high, it drives CLKRUN# low in order to
maintain the clock so that it can assure internal PCI clock related functions complete.
After the target samples CLKRUN# low for two cycles it releases drive of CLKRUN#.
The central resource takes over low drive. In this way, the target only drives CLKRUN#
for two CLK rising edges.

The target may not assert CLKRUN# unless it is sampled high with CLK (before the
clock is stopped).

19

' Revision 1.1

2.1.5.4. Clock Latency Issues

When restarting the clock after a request for clock run becomes active, it is desirable to
return the clock to operational frequency as soon as possible.

An exact time duration cannot be guaranteed due to differences in system design. For
example, one system may simply gate the clock between active cycles, while another
may shut down the clock and its oscillator during long periods of inactivity. In the
former case, the clock return can be instantaneous, while the latter case may require
several milliseconds in order to stabilize the oscillator.

When determining buffer sizes for silicon targeted at portables, a portion of this clock
latency should be taken into account. However, it is unreasonable to expect buffer sizes
to account for re-powering of many peripherals. System designers that need to power up
large portions of circuitry due to a sleep condition will have to devise another method to
prevent data loss.

3. Minimum PCI Clock Frequency

In the PCI specification it is stated that the PCI clock can run at any frequency up to

33 MHz. It is also stated that the clock must be stopped in the low state. A problem
arises when the clock is run very slow. Since clock Cycle time (Tcyc) maximum is
infinite, the clock may be in a low or a high state for up to an infinite amount of time.
For example, if the clock is run at 1/60 Hz, CLK will be low for 1/2 minute and high for
1/2 minute. Although this example is extreme, it is allowed under the current wording of
the specification.

The minimum PCI bus clock frequency which is recommended in a Mobile PCI
environment is 32 kHz. In this way, the PCI clock will only run from 33 MHz to 32 kHz
and stop at DC. This changes maximum Tcyc to 32 Us if running, and infinite if stopped.
The clock frequency should meet the timing requirements as specified in Table 4.

Table4: PCl Mobile Clock Timing Requirements

Symbol Parameter Minimum Maximum Notes

Tcyc CLK cycle time 30 ns 32 ys 1

Tlow CLK low time 12 ns infinite 2
Notes:

1. Maximum cycle time is enforced while CLK is running. If CLK is not running
(that is, CLKRUN#* is not asserted), Tcyc maximum may be infinite.
2. When CLK is stopped, Tlow will be infinite.

20

Revision 1.1 '

Figure 8 illustrates the PCI clock timing requirements.

Clock Stopped Low

Figure8: PCI Clock Timing Diagram

Refer to the PCI Local Bus Specification for threshold maximums and minimums.

4. PCI - CardBus/PCl Common Silicon Requirements

Refer to the CardBus/PCI Common Silicon Requirements section of the PCMCIA PC
Card Standard Guidelines document to understand how one implementation can address
both the CardBus and PCI Markets.

5. PCI Agent Power Capabilities

A PCI agent targeted for the mobile market must have specific power capabilities to
allow a comprehensive power savings scheme. Figure 9 defines the different segments
of an agent, showing three different possible segments for PCI Interface power control.
The agent specific power portions are shown for completeness only and are not
discussed here.

|
|
N ! D
PCIIIF | AGENT
POWER ' POWER
CONTROL i CONTROL

PCI BUS PCI PCI 1 PCI I AGENT :AGENT AGENT I/O

BUFFERS | INTERFACE | CONFIG | CIRCUITRY| BUFFERS
|

POSSIBLE POWER ZONES

Figure9: PCl Agent Power Segments

As shown above, an agent can be segmented into different power capability zones. Each
power zone can be controlled separately to achieve maximum power savings.

The PCI interface can be thought to have many power capability levels. The buffers can
be powered down while the rest of the chip is powered, saving agent parameters. The

21

' Revision 1.1

PCI clock can be slowed or stopped, saving power used across the PCI bus and by the
interface logic.

These levels range from highest power consumption to lowest. As less power is
consumed, more agent parameters may be lost and latency to recover may be higher. A
simple rule of thumb is shown in Figure 10, latency and power consumption directly
correspond to state loss and power switching.

Highest Power No No Power

Consumption = = Parameter Loss = Switching

Figure 10: Latency Diagram

5.1. Clock Control

According to the PCI Local Bus Specification, the PCI clock operates up to 33 MHz. A
variance is included for motherboard only components, which states that the component
can enforce a policy of no frequency changes. For additional power savings, a designer
of a mobile system can take advantage of the allowed frequency range by slowing the
clock during periods of low activity and perhaps even stopping the clock during periods
of inactivity (refer to Chapter 2 for discussions of agent clocking control and Section 3
for recommended frequencies). In this case, any component which enforces the policy of
no frequency change should not be used.

To ensure maximum power savings, an agent must handle this variable clock frequency
to be useful in a PCI Mobile environment. There are several things the agent must be
capable of to do this. First, the agent should not depend on a specific frequency across
the interface for proper operation. If the agent needs a specific frequency for proper
operation, it should rely on a separate source for it and only use the PCI clock for
interface clocking. Second, the agent should use static design practices to ensure that
PCI state and configuration data is not lost when the clock is stopped.

Clocking control at a system level may be, but most frequently is not, under software
control. The most optimum clocking control will be transparent to software, that is,
there is no agent parameter loss and no latency to return to a normal operational
frequency.

5.2. PCI Configuration and Interface Logic Capabilities

To achieve even greater power savings, the system designer removes power from idle
agents while normal system activity continues. To accomplish this in a bused
environment, some PCI agents remain completely active and powered, while others leave
only the buffers powered. As an example, many systems disable the hard disk drive after
periods of inactivity while the system continues to operate.

In this way, the PCI bus has active traffic to most frequently used agents. A form of I/O
Trapping can be used to "catch" any bus transactions to the disabled agents, so that these
transactions can be reissued after the agent has been restored to full operational
capability.

22

Revision 1.1 '

In this scenario, configuration parameters can be lost. When the system needs this
resource it will need to restore it to full operational capability, typically by reconfiguring
it. The system may completely reset the agent or it may restore it to its original
configuration before power off. For reconfiguration, the agent needs to make all register
data available. This should be done by providing read/write-able registers, and/or
shadowing write only registers. In this way, the system can read a device’s pre-disabled
data and restore it upon returning the device to normal activity.

5.3. Buffer Capabilities

At the highest PCI Interface power savings, the bus can be completely powered off. This
can be done in conjunction with the configuration and interface logic if desired. Leakage
control must be carefully planned to preserve power savings when one or more agents
are powered (refer to Section 8 for discussions of agent leakage control on the PCI bus).
The interface can return to full function with some latency, varying depending on power
conditions. The PCI Interface may be entirely powered off while the rest of the agent is
powered on. In this scenario, there is no associated state loss.

It is recognized that achieving power savings in this state is agent specific. For example,
power savings means could be tightly coupled with the agent functions and the agent
design, and could be determined by the agent itself or the agent's driver.

6. CLKRUN# Across a Bridge Example

When using the clock run protocol in an architecture with multiple buses and bridges, the
routing of the clock and the relationship of the frequencies between the multiple buses
must be considered. The PCI to PCI Bridge Architecture Specification states: "The
relationship between the primary interface and secondary interface clocks of a PCI to
PCI bridge is implementation specific." Here we show several possible implementations,
with CLKRUN# design examples.

Device A Device B Device C Device D

Bridge

Primary Bus Secondary Bus

Figure 11: Bridge Architecture

Referring to Figure 11, the relationship of the operational frequency of the primary bus
and secondary bus must be considered. Here, we will discuss the following
relationships!:

e Case A: The primary bus speed is equal to the secondary bus speed. The bridge has
clock buffers, introducing a slight skew, but the frequencies remain similar.

e Case B: The primary bus speed is some multiple of the secondary bus speed. The
bridge has clock dividers. CardBus bridges will most likely implement this method.

1 Refer to Section 6.4. Secondary Bus Clock Not Controlled By Bridgefor a description of CLKRUN#
handling when clocking for the secondary busis not handled by the bridge.

23

' Revision 1.1

e Case C: The primary bus speed has no relationship to the secondary bus speed. The
primary and secondary buses are asynchronous to each other. The bridge has an
external clock source for the secondary bus. This may occur when the primary bus is
the host bus, running at the processor speed.

The assumption is made for simplification that the primary bus is the higher speed bus,
and that the secondary bus will have its clock slowed or stopped before (or at the same
time) as the primary bus.

The assumption is also made that the bridge contains the clocking resources for the
secondary bus, but not the primary bus. The bridge does not drive CLKRUN# high on
the primary bus, that is, it does not act as central resource for the primary bus. The
bridge does drive CLKRUN# high on the secondary bus to indicate request to stop/slow
the clock. The CLKRUN# driver (on the bridge) for the primary bus is an open-drain
buffer, while the driver (on the bridge) for the secondary bus is sustained tri-state.

6.1. Case A: Skewed Clocks

When both the primary and secondary buses have the same operational frequency,
CLKRUN# should be buffered similar to the implementation of CLK. The signal
CLKRUN# is an asynchronous signal and can be buffered once without significant
performance delay.

When CLK is simply buffered through the bridge, CLKRUNZ# can be routed around the
bridge; however this is not recommended due to loading and drive requirements. The
system designer must carefully plan his design, calculating buffering and timing needs.
The bridge designer must give some thought to how CLK is to be distributed to the
secondary bus so that clock control (by CLKRUN#) can be supported in the system.

PULLUP

SEN

PCR# = Primary Bus CLKRUN# PEN = Primary Bus Enable for CLKRUN# driver
SCR# = Secondary Bus CLKRUN# SEN = Secondary Bus Enable for CLKRUN# driver

Figure12: Bridge CLKRUN# Routing

This example highlights the details of the CLKRUN# protocol that need to be met by the
bridge design. This is not the only possible implementation. One variation not shown
here involves allowing the bridge to shut down the secondary bus while the primary bus
is active.

24

Revision 1.1 '

The primary bus speed is equal to the secondary bus speed. The clock signal is passed
through the bridge with only a slight skew. The CLKRUN# signal is basically passed
through the bridge also. However, special care must be taken for the bi-directional
nature of CLKRUN#. The following description explains the bi-directional controls for
the buffers. Refer to Table 5 and Figure 13 for more information.

Table5: CLKRUN# Terminology

Terms Definitions

PCR# Vaue of the CLKRUN# signal on the primary bus (that is, high or
low).

SCR# Value of the CLKRUN# signal on the secondary bus.

PEN Enable for the open drain CLKRUN# driver on the primary bus. Note:

The bridge can only drive the primary bus CLKRUN# low. Following
the CLKRUN# protocol, the bridge drives the signal low for only two
clock cycles, then releasesit. The primary bus central resource takes
over the low drive after that.

SEN Enable for the st/'s CLKRUN# driver on the secondary bus. Note:

The bridge acts as the central resource for CLKRUN# on the secondary
bus. It will drive CLKRUN# high for one cycle, then a keeper will
hold it active. 1t will drive CLKRUN# low asindicated in the
following description.

State A:

Upon power-up, the clock is running. Therefore, the primary bus central resource drives
CLKRUN# low (PCR# = 0), and the bridge in turn drives CLKRUN# low on the
secondary bus(SCR# = 0). PEN, the primary bus driver, is disabled. SEN, the secondary
bus driver, is enabled.

State B:

The next action possible: The primary bus central resource attempts to stop/slow the
clock by first driving CLKRUN# high (PCR# = 1). SEN remains enabled until the next
clock. After that it disables its driver, enabling its keeper. PEN remains disabled.

Two things could happen next: either 1) a device on the primary bus pulls CLKRUN#
low, or 2) a device on the secondary bus pulls CLKRUN# low.

State C:

SCR# = 0. PEN must become enabled for two clocks, then become disabled. SEN must
also become enabled, disabling the keeper. SCR# = PCR# = (.

25

F_ Revision 1.1

Transition 5.
SEN transitions to 1.
Keeper is disabled.

State A.
Initial Condition.
Clock is running.

Transition 1.

Request by Primary Bus
Central Resource to
stop or slow clock.

Transition 2.

Request By Primary Bus
Device to Start/Speed Up
the clock.

State B.

SEN transitions to 0 on
next rising clock edge.
Keeper is enabled.

No change for PEN.

®

Transition 3.

Request By Secondary Bus
Device to Start/Speed Up
the clock.

Transition 4.

Request by Primary Bus
Central Resource to
stop or slow clock.

State C.

PEN is enabled for two clocks,
then disabled.

PCR# = Primary Bus CLKRUN#

PEN = Primary Bus CLKRUN# driver enable
SCR# = Secondary Bus CLKRUN#

SEN = Secondary Bus CLKRUN# driver enable

Figure 13: State Diagram for Case A: Skewed Clocks

6.2. Case B: Divided Clocks

When the clock for the secondary bus is derived from the primary bus clock, the bridge
will have to act as "central resource"” for the secondary bus, controlling CLKRUN# as
well as ensuring clock run protocol timing is met.

6.2.1. Description of Flow Diagram: Divided Clocks

The flow starts with a condition of both the primary and secondary clocks running. See
the flow diagram in Figure 14. Here, both PCR# and SCR# (primary and secondary
CLKRUN# signals) are driven low.

26

Revision 1.1 '

The next condition to occur is a primary bus request to stop the clock. The primary bus
central resource will drive PCR# high. The CLKRUN# protocol guarantees that there
will be at least four additional primary clocks after PCR# is sampled high.

At this time, the bridge must notify the secondary bus devices of the request to stop the
clock. It does so by driving SCR# high.

After SCR# is sampled high, the Secondary Clock Counter starts counting the number of
secondary clocks. The bridge must ensure that at least four secondary clocks are given
before the clock is allowed to be slowed/stopped on the secondary bus.

Any active cycles on the primary or secondary bus (FRAME# active) causes a return to
all clocks running.

When the Secondary Clock Counter reaches four, the clock is allowed to slow/stop.

Prior to a secondary clock count of four, the bridge must ensure that the primary clock
keeps running by asserting PCR# low whenever it is sampled high (this protocol is
described in detail in Section 2.1.4.3. Maintaining the Clock. According to this
protocol, the bridge must assert PCR# low within two primary clocks of it being sampled
high to achieve an uninterrupted clock.

If there is a secondary request to not slow/stop the clock (by SCR# being asserted low)
the flow returns to all clocks running.

Devices should not gate CLKRUN# with FRAME# to determine an active cycle. In this
protocol, the clock resource may assert a stop/slow clock request on the same cycle a
master starts a cycle. This will not cause an error condition since the clock is still
running. The clock resource must withdraw its request to stop/slow the clock by driving
CLKRUN# low.

See Figure 15, a timing diagram example of this flow. Here, the primary clock is divided
by four to generate the secondary clock. When the primary clock is divided by four as
shown, at least 23 primary clocks are needed before the secondary clock can be
slowed/stopped.

27

F_ Revision 1.1

All Clocks Running
PCR#=0
SCR#=0

PCR# = Primary Bus CLKRUN#
SCR# = Secondary Bus CLKRUN#

Primary
Request to Stop/
Slow Clock?

NOTE 1: This flow is from
the BRIDGE's perspective.

NOTE 2: Secondary Clock Counter

Clear Secondary is incremented on the rising edge

Clock Counter

Drive SCR# = 1
of the Secondary Clock.

NOTE 3: This is a FLOW Diagram.

No timing relationships are implied.

Start Secondary
Drive SCR# =0
Clock Counter

Drive PCR# =0

(for two clock YES Secondary
Req. to NOT Stop/,
edges only) Slow Clock?

Active Cyle
On Prim or Sec
Bus?

YES

Secondary YES
Clock Counter

=42

Allow Stop/Slow
Clock

Drive PCR# =0
(for two clock
edges only)

YES Secondary NO
Reg. to NOT Stop/,
Slow Clock?

Figure 14: Flow Diagram for Case B: Divided Clocks

28

f = {7 |

Revision 1.1

(8¥N3 diTind A0800STY IVAINGD K NIAMT
>
| | , | | | , | | | , | | | | | , | | | | | | | [%ZDMEQ
| |
| | W W | | W W | | W W | | | | W W | | l | | | ” | Umm
| | | | | | | | | | | | | | | | | | | P mugg ; ?g | | ”
| | | | | | | | | | ! | | | | | | | | |] |
| | | | F09 A NN | | | |
| | _ _ | | _ _ | , _ | | | 30NN 6 A ! | | | i | m%%%ﬁ
]] | I I | |
R 1 0 e T chp G L 0 o D L LKL R T
2 L L L —> T T T T < t t « t t t
| | | | | | e | ” ” ” ”
	L							
				!				
_ , _ | |
J

29

Figure 15: Timing Examplefor CaseB: Divided Clocks

' Revision 1.1

6.3. Case C: Asynchronous Clocks

When the buses are asynchronous to each other, the bridge designer has many options.
Either bus can be stopped while the other is running full speed (as long as accesses do
not need to cross the bridge). The bridge must initiate the clock run protocol to restart a
stopped clock due to an active request on either bus. The bus states follow Figure 13.

6.4. Secondary Bus Clock Not Controlled By Bridge

When the clock control mechanism for the secondary bus is not handled by the bridge,
the clock run protocol can still be used. CLKRUN# must be coupled (as always) with
the clock source/controller.

One implementation involves an independent piece of hardware that receives the clock
and redrives it to the bridge and each of the secondary bus devices. For this
implementation, the bridge does not have control of the clock, therefore it cannot handle
the CLKRUN# protocol. The independent piece of hardware must handle CLKRUN#
as well.

Another implementation can have the clock distributed to each device from a central
system resource. In this case, again the bridge does not have control of the clock and
cannot handle the CLKRUN# protocol. The central resource must handle CLKRUN# -
the central resource designer can make the choice whether to stop/slow the buses
separately or together. The designer can also determine (rough estimate by the number
of clocks he drives) the loading on CLKRUN#. If the loading is too large for one pin, he
can supply two pins and simply OR them together in the central resource. There will be
no contention of the signals since only the central resource can drive the signal high.

7. Use of Mixed Clock Run Support Components

Power management techniques vary from system to system, as does power usage. The
Clock Run (CLKRUN#) signal is designed to introduce fine grain clock control, that is,
maximum power savings, into mobile designs. With this signal, systems can stop or
slow the interface clock between every active cycle, if they wish.

With the introduction of CLKRUNZ#, there will exist in the marketplace older
components that do not support this signal. A system designer has several choices when
confronted with a "power managed" design. He can pick only components for the
motherboard that support CLKRUN# or he could mix components but not utilize the
CLKRUN# protocol (he does the latter by tying CLKRUN# low on all components).
Both of these choices are extremes, and tend to lead to disadvantages. For example,
when picking only components with CLKRUNY#, system design is restricted to new parts
only. When the capability is available, not using the CLKRUN# protocol wastes
functionality.

The system designer has another choice. He can architect his system both to utilize
CLKRUN# for those parts that support this feature while still allowing the use of older
components (in particular, those that are compatible with CLKRUN#). As was
mentioned earlier, power management techniques vary from system to system, and an
innovative system designer will tailor these techniques to utilize the varying support of
CLKRUN# in his components.

30

Revision 1.1 '

7.1. Characteristics of Devices

Consider the component choices a designer has. Each type of device has features which
allow or inhibit mobile design and CLKRUN# functionality and compatibility. For
example, when attempting to architect a power managed design, active and static power
consumption will eliminate some of the available component choices. It is not
unreasonable to consider that non-static implementations will also be eliminated by some
designers.

Motherboard Components: PCI motherboard components "may operate at any
single fixed frequency up to 33 MHz, and may enforce a policy of no frequency
changes" (Reference: PCI Local Bus Specification.). However, PCI Mobile
components are recommended to have a static interface design, thereby
supporting a frequency range down to DC. It is these static devices that are
useful to a mobile designer and may be compatible with CLKRUN#.

Add-In Cards: PCI has add-in cards which "must work with any clock
frequency between DC and 33 MHz." (Reference: PCI Local Bus
Specification.). By this definition, add-in cards are by nature static designs and
must work in a slow/stop clock environment. (Work is defined here as: not lose
device data with variable frequency clocks. Understandably, buffer over/under
run may be a problem).

CardBus: CardBus add-In cards support CLKRUN# if needed, and also
support a frequency range down to DC.

Master: Master devices are strongly recommended to participate in the clock
run protocol. Careful attention must be used with these devices since buffer
over/under run may occur if the clock is stopped or slowed.

Slave: Slaves do not initiate accesses and therefore will not need to participate
in the clock run protocol. A feature has been added to the clock run protocol to
allow slaves to participate in the protocol, however, this function is more of an
enhancement to the device and is not needed for proper functionality.

Once non-static implementations are eliminated, of all the devices listed here, master
devices on the motherboard that do not support CLKRUN# are the devices which may
malfunction in a CLKRUN# environment. The system designer can disable the clock
run protocol when these master devices are enabled (if the central resource does not have
an enable/disable feature for CLKRUN#, the pin can be tied low on the motherboard), or
he can design his system to ensure that the master has access to the PCI bus when
needed.

7.1.1. Bus Access Algorithm

When CLKRUN# is not supported by one or more master devices in the design, the
system designer will need to devise an algorithm for roughly determining when the PCI
Master needs access to the bus. Many pieces of information are available to do this, such
as buffer sizes (motherboard components), bus latency rules (PCI masters must accept
certain amounts of latency for access to the bus), and the Maximum Latency field
(described below).

By using the PCI Max_Lat field, the system designer can determine the opportune times
to stop/slow and restart the PCI clock. This field is used with other PCI fields to
determine required bus bandwidth for the device and, therefore, its latency timer

31

' Revision 1.1

programming. It is "used for specifying how often the device needs to gain access to the
PCI bus. The value specifies a period of time in units of 1/4 microsecond. Value of zero
indicates device has no major requirements for the settings of the latency timers."
(Reference: PCI Local Bus Specification)

This field can also be used to roughly determine when a master will require a clock edge
to generate a request. If the system wants to stop the clock, it would restart the clock
periodically to service requests. If the system wants to slow the clock, it would need to
guarantee that the clock frequency gave the device a rising edge often enough for it to
produce a request to empty/fill its buffers. The device would need to supply edges twice
as often as its Max_Lat value. For example, if the field value is 2 microseconds, a
stopped clock system would restart the clock every microsecond and a slowed clock
system would supply a rising edge every microsecond.

If more than one master in the system does not have CLKRUNZ# support, the smallest
Max_Lat value would be used for the system.

Figure 16 shows the flow diagram a system designer would follow to determine system
CLKRUN# functionality. Please note that determining CLKRUN# support for the
motherboard can be determined at design time.

Enable CLKRUN#
Stop / Slow END
Control Circuitry

Are all devices
Slave?

Enable CLKRUN#
Do all Master

have CLKRUN#
support?

YES Stop / Slow END

Control Circuitry

Enable CLKRUN#
Stop / Slow Control
Circuitry Utilizing

Bus Access Algorithm

END

Figure 16: Determining Clock Run Support on the Motherboard

32

Revision 1.1 '

1.2.

Clock Slowing/Stopping and Add-in Cards

Since add-in cards are required to operate from DC to 33 MHz, they are, therefore, static
devices and work well in a power managed system. If the add-in card is a slave, it does
not need to participate in the protocol and will function properly in a CLKRUN#
environment.

If the add-in card is a master card, the system can use a bus access algorithm to
periodically restart the clock.

See Figure 17 for determining at boot time clock slowing/stopping compatibility with
add-in cards.

l START l

CLKRUN# system
Boots with
Add In Card

Enable CLKRUN#
Stop / Slow END
Control Circuitry

Is Add In a

Slave?

Enable CLKRUN#

Stop / Slow Control
Circuitry Utilizing
A Bus Access Algorithm

Note: This flow
is repeated for
each add in card.

END

Figure 17: Determining Clock Slowing/Stopping Compatibility with an Add-in Card

8. PCI Buffer Leakage Control

In any power managed system it is desirable to turn off power to unused portions of
circuitry. This reduces power to a lower level than the simpler method of stopping
clocks. Unfortunately, CMOS devices have inherent to their structure parasitic clamp
diodes to both supplies. Any high level signal input to a CMOS circuit will supply
power to that circuit and prevent achieving the low power consumption required.

In PCI system designs, a typical scenario could include several PCI peripherals devices.
Upon detection of a suspend state request, the system could desire to power down some
but not all of the PCI devices. However, it is likely that some PCI devices may not be

33

' Revision 1.1

powered down, perhaps a PMU or Central resource which must remain powered to
monitor wake up sources. The system power management unit will typically power off
the desired PCI devices and indicate the entry into a suspend state via some sideband
mechanism to the remaining powered PCI devices. These powered PCI devices must
then enter a leakage control state. The PCI bus would be inactive at this time.

In this case where not all PCI devices are powered down, care must be taken to choose
which peripheral devices on the PCI interface must be separately powered down. If a
device is not implemented for residing on an inactive PCI bus on which some devices are
powered down, it will at best lose power to leakage and in the worst case partially power
up powered down devices through their input structures. This latter case can induce
CMOS latch up on power up and impair system reliability.

Each type of signal on the interface has a specific buffer characteristic (input, output, or
other) which dictates device design implementation allowing for peripheral power down
without leakage through PCI input and output structures. The PCI leakage control
features should also prevent parasitic power up of powered down peripherals via PCI
control signals.

System implementers should place a device's interface in a leakage control state directly
upon entry of a power down suspend state. Each type of interface circuit must be
considered separately when examining leakage control. The responsibilities for leakage
control can be separated into PCI central resource and PCI agent functions. The PCI
central resource is responsible for placing the bus into a leakage controlled state. This is
not to say that the logic responsible for this function must physically reside with other
central resource logic, but rather that it is a function that needs to be implemented once
for a given PCI bus. PCI agents must logically disconnect from the bus.

8.1. Leakage Controlled System Example

The following sections show a potential implementation for a leakage controlled system.
This example is shown here to illustrate the problem. Please note that other market
solutions are available. Figure 18 is a system diagram showing a leakage scenario.

DEVICE A PCI BUS DEVICE B
POWERED OFF POWERED ON
DEVICE C

POWERED OFF

Note: Device B must be leakage controlled.

Figure 18: System Scenario for Leakage Problems

34

Revision 1.1 '

The following sections describe device specific mechanisms for solving leakage
problems. First, the physical implications for each type of I/O circuit are discussed.
Next, leakage states are given followed by a discussion of a mechanism for entering and
exiting this leakage controlled state.

8.1.1. Input Circuits

In the leakage control state an input circuit should not supply any current to the external
pin nor should it provide a path for cross over currents, without regard to the external
voltage applied. Figure 19 is a diagram of a typical CMOS input buffer.

VDD

ESD Clamp Diodes

ﬁg Input Stage
/ Mi

Input Pad

~
A

Vss i

Figure 19: PCI Input Circuit

If both Vdd and Vss approach ground potential and the input pad is over a diode drop
above ground, the ESD clamp diode to Vdd will be forward biased. This will cause the
powered down device to be parasitically powered via the input pad.

Additionally, if Vdd is at operational levels and the input pad is not at a rail both
transistors in the input stage will be on and shunting current. Care must be taken to
prevent this.

The one way to solve both issues is for all inputs to be driven or pulled low, in this case
the functionality associated with the input must be disabled during the leakage control
state.

In summary, for this example, when in the leakage control state all powered input
circuits could do the following:

» disable all pull-up or pull-down devices
* prevent any shunting currents through the input totem pole

* disable all functionality associated with the input

35

' Revision 1.1

8.1.2. Output Circuits

In the leakage control state an output circuit should not supply any current to the external
pin without regard to the external voltage applied. Figure 20 shows a generalized output
circuit. Note that the ESD clamps are missing in the diagram. The typical structure of a
standard output stage can usually supply the needed ESD protection without additional
circuitry.

VDD

-

Output Stage

—

Output Pad

Ves—

Figure 20: PCI Output Circuit

In the case of outputs, it is important to prevent the output stage from sourcing current
unnecessarily. As mentioned before, this could happen if the output is driving a "high"
level into an unpowered input stage.

Additionally, output stages may contain passive pull ups and pull downs which are also
potential supplies for leakage current. When in a leakage control state, these level
holding circuits should be disabled or otherwise accounted for.

Finally, the task of eliminating a source for un-powered input stage leakage falls on the
powered output drivers. If a signal is allowed to float or is otherwise tri-stated the
connected un-powered input stages will have forward biased ESD clamp diodes. This
causes the floating signal to parasitically power the un-powered devices. This leads to
excessive leakage current from the powered device to the un-powered device and
increases the possibility of latch up when power is again applied to the shut down device.
Therefore, a powered output stage must drive its signal level low for the duration of the
leakage control state.

Again in summary, for this example, when in the leakage control state all powered output
circuits could do the following:

e disable all pull-up devices
e force the output to a driven low state

The application of a driven low or “0” state is valid in this case because no external
voltage source is attached to the circuit. Note, also, that the transition to the “0” state is
independent of the active state of the signal pin. Peripheral circuitry must disable any
critical functionality before switching power.

36

Revision 1.1 '

8.1.3. Input/ Output Circuits

In the leakage control state, an input/output circuit does not supply any current to the
external pin or provide a path for cross over currents. Figure 21 is a typical I/O circuit.
Note that it is simply a combination of an input and an output stage.

Vb ESD Clamp Diodes
T

Output Stage
/\
/\

-

$ Input Stage
Vssi

Figure21: PCI 1/O Circuit

I/0 Pad

Since 1/O circuits are a combination of input and output stages the leakage control issues
are simply a combination of input and output issues. The solutions are also similar with
one exception.

Since 1/0O pads are frequently used in bused signal situations the output stages of the
powered /0O pads should not be strongly driven low as they can be in a pure output case.
The possibility of a multiply sourced low level must, instead, be dealt with by
implementing a passive pull down. The use of a passive pull down prevents the
possibility of excessive leakage currents if two or more powered I/O pads are connected
and transition to the leakage control state and attempt to force the signal low at slightly
different times.

When in the leakage control state all powered input/output circuits could do the
following:

e disable all pull-up devices

» force all output drivers to three-state

» force the output low with a weak pull-down

e prevent any shunting currents through the input totem pole
e disable all functionality associated with the input

The application of a weak pull down only enabled in the leakage control state is used in
this case because it is possible that an external device could be driving the signal.

37

' Revision 1.1

8.1.4. Clock Inputs

Clock inputs are assumed to be always driven. When a clock is stopped, it must be
stopped in the “0” state.

8.1.5. Clock Outputs

Clock outputs will always be driven. If the clock is stopped, the driven state must be
“0”. During transitions into and out of the leakage control state clock outputs must not
glitch.

8.1.6. PCI Side Band Signals

Typically, there are PCI bus side band signals which control pins on device interfaces.
As a result, the PCI bus may be reduced in power by stopping the clock or be powered
down by shutting off power to all attached devices.

The interface is broken into two parts:
* signals connected only to the side band interfaces
* signals connected only to the PCI bus

Signals connected to side band interfaces may follow the guidelines established here for
the input, output, input/output signal types but are not addressed here specifically.

The following buffer state descriptions are defined for PCI peripherals. Note that a
distinction is made between a driven low and resistive low assertion during the leakage
state. If a device has the only driver on a signal, it is driven low. This is denoted by a
"0" in the tables. Ifthe signal is shared it must essentially be placed in three-state and
pulled down. This is denoted by an "L" in the tables.

8.1.7. Core PCI Interface

For this example, signals connected only to the PCI bus can be driven by the central
resource as shown in Table 6.

Table6: PCIl Bused Signals

Signal Direction Inactive State Leakage State
RST# Out 1 0
FRAME# I/O 1 L
IRDY# I/O 1 L
TRDY# I/O 1 L
STOP# I/O 1 L
LOCK# I/O 1 L
SERR# I/O 1 L
PERR# I/O 1 L
DEVSEL# I/O 1 L
C/BE#(3:0) 1/0 Prev. state L
PAR 1/0 Prev. state L
SBO# I/O 1 L
SDONE 1/O 1 L

38

Revision 1.1
PCICLK Out 0 0
AD(31:00) 1/O Prev. state L

Note that RST# should be treated with care. RST# can be taken low by the central
resource to prevent leakage of the inactive signal to unpowered devices. However, the
functional response of any powered agents to this active reset level while in the leakage
control state is left to the implementer.

8.1.8. Bus Master Interfaces

REQ/GNT pairs normally connect to an individual peripheral and are powered off
together. Table 7 lists the states of REQ/GNT pairs.

Table7: REQ/GNT Pairs

Signal Direction Inactive State Leakage State
REQn# out 1 0
GNTn# in 1 Three-State

8.1.9. Interrupt Interface

The interrupt interface consists of four interrupt lines which cannot be hard grouped with
other peripheral interfaces. Each of these interrupt inputs may be powered off
individually. Table 8 lists the PCI interrupts’ states.

Table8: PCI Interrupts

Signal Direction Inactive State Leakage State
INTA# out 1 L
INTB# out 1 L
INTC# out 1 L
INTD# out 1 L

8.1.10. Mechanism for Entering / Exiting Leakage Controlled

Thus far, the discussion of a specified mechanism for getting into and out of the leakage
control state has been avoided. Instead, the focus has been on how to prevent leakage
once some of the devices are powered down. It hasn't been stated that power up is done
with reset asserted but clearly powered down devices will have to be reset. As for
powered devices, once they are in a leakage control state they are logically disconnected
from the PCI bus and therefore should ignore any oddball signals while the other devices
are powering up. Implicit in this is some sort of sequencing which could go something
like this:

1. PMU decides it is time to power down and asserts a shutdown signal. This shutdown
signal puts powered devices into leakage control state.

2. The PMU then removes/grounds power to the devices to be powered-down.
3. The system is now in a suspend state with a minimum number of powered devices.

4. PMU decides it's time to resume and asserts PCI reset and powers up the system.

39

' Revision 1.1

5. When power is good the PMU deasserts PCI reset and the leakage control signal.

There are probably as many permutations of this sequence and implementations thereof
as there are designers of portable systems. The efficiency of this mechanism is likely to
be a differentiating feature. Here, only the basic requirements to enable partial PCI
power down are given.

A possible implementation of the mechanism for entrance/exit from the leakage control
state is a sideband signal. Upon assertion of this signal, devices would enter a leakage
controlled state. Upon deassertion of this signal, the devices would leave this state. For
more information, see Figure 22.

SUSPEND#

Device State Leakage State

Figure 22: Example of a L eakage State Entrance/ Exit Mechanism

Note that this mechanism cannot be implemented under software control. Upon entrance
into a leakage controlled state, all communication across the PCI bus is shut down.

40

	Return to Contents

